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Goals

● Understand .db file and IOC shell syntax
● Be able to follow the flow of a database
● Add/modify an alarm condition
● Add a calcout record to modify a value

● Examples
● https://pubweb.bnl.gov/~mdavidsaver/training-201010.tar.gz



  

IOC Data Pipeline

● Configuration vs. Compilation

● Modular

● Database
● Data (Configuration)

● Device Support
● Operations

– Modify DB

– Access HW

● Stateless (ideally)

● Driver Support
● Catch-all

Hardware (Driver Support)

Records

Operator/Client/Other IOC

Device
Support



  

In the Database

● Record
● Collection of fields
● Recordtype
● Many have devSup

● Fields
● Atomic value (int, …)
● Scalar, array, or link
● Attributes (eg. PP)

● Record+Field=Process Variable

Hardware (Driver Support)

Records

Operator/Client/Other IOC

Device
Support



  

In the Database

● Record
● Collection of fields
● Recordtype
● Many have devSup

● Fields
● Atomic value (int, …)
● Scalar, array, or link
● Attributes (eg. PP)

record(ai, “myrecord:v17”) {

field(DESC, “neat”)

field(DTYP, “mydev”)

field(INP, “#C1 S7 @v”)

}

Record+Field=Process Variable



  

RDB Translation

● Process DB is an object database with an 
integrated client (device support).

● In terms of a relational database
● recordtype → table
● record → row
● field → column
● link → foreign key (???)

● FK is a cell (column+row) pointing to a row.
● A Link is a cell pointing to another cell.



  

What is a record?

● A record is the basic 
unit of “action” in a 
database

● Field values modify 
the action

● Records do
● Fields store

Record Device
Support

Fields



  

Device Support

● Compiled (C/C++)
● Associated with a 

record
● Use pre-defined set 

of hooks

● API
● report()
● init()
● init_record()
● get_iointr_info()
● process()

– read()
– write()



  

Db Syntax

● Recordtype
● Instance name

● $(P) macros expanded 
when loaded

● Load same file several 
times

● Field name
● Field value

● Always quote

record(ao, “$(P)name”) {

field(DTYP, “mydev”)

field(OUT, “#C$(C) S0 @”)

field(LINR, “LINEAR”)

field(ESLO, “0.1”)

}



  

Simple recordtypes

● Analog (float)
● ao, ai

● Binary
● bo, bi, mbbo, mbbi

● Integer (32-bit)
● longout, longin

VAL

OUT INP

ao ai

Pushes 
value
to ...

Pulls 
value
from ...



  

Simple recordtypes

● Analog (float)
● ao, ai

● Binary
● bo, bi, mbbo, mbbi

● Integer (32-bit)
● longout, longin

In VDCT



  

Simple recordtypes (2)

● Input
● VAL=read(INP)
● Operator reads VAL

● Output
● Operator sets VAL
● write(OUT,VAL)

● Address (INP/OUT)

VAL

OUT INP

ao ai

Pushes 
value
to ...

Pulls 
value
from ...



  

Calculator Record

● recordtype: calcout
● 12 Input links (A-L)
● 1 Output link (OUT)
● Result stored in VAL
● CALC field

● (A-B)/(A+B)
● Length limit (40 char)

● Changeable at runtime
● OUT, OCALC, OVAL will 

be explained later



  

Calculator Record

● recordtype: calcout
● 12 Input links (A-L)
● 1 Output link (OUT)
● Result stored in VAL
● CALC field

● (A-B)/(A+B)
● Length limit (40 char)

● Changeable at runtime
● OUT, OCALC, OVAL will 

be explained later

record(ai, “bpm:up”) {

}

record(ai, “bpm:down”) {

}

record(calcout, “bpm:y”) {

field(INPA, “bpm:up”)

field(INPB, “bpm:down”)

field(CALC, “(A-B)/(A+B)”)

}

Full list of CALC expression syntax
in record reference manual



  

Calculator Record

record(ai, “bpm:up”) {

}

record(ai, “bpm:down”) {

}

record(calcout, “bpm:y”) {

field(INPA, “bpm:up”)

field(INPB, “bpm:down”)

field(CALC, “(A-B)/(A+B)”)

}

Full list of CALC expression syntax
in record reference manual



  

Exercise 1 – softIoc Basics

● Executable: softIoc
● Part of EPICS Base
● No device support

Useful utilities from EPICS Base

caget, camonitor, caput, cainfo



  

The Counter

● Start script: count.cmd

dbLoadRecords(“count.db”, “P=myprefix”)

iocInit()

● Database: count.db

record(calcout, “$(P):count”) {

field(SCAN, “1 second”)

field(VAL, “7”)

field(INPA, “$(P):count.VAL NPP”)

field(INPB, “2”)

field(CALC, “A+B”)

}

● Simple 1 Hz counter

softIoc count.cmd

● Things to try

camonitor myprefix:count

caput myprefix:count.SCAN 

“.1 second”

caput myprefix:count.B -2

Select your own

Full list of CALC expression syntax
in record reference manual



  

Extending Counter

● Things to try
● Make the counter roll 

over
Use “cond ? true : false”

Set limits

field(HOPR, “10”)

field(LOPR, “0”)

● Examine CA meta-
data

● caget -d GR_DOUBLE 
myprefix:count 

● caget -d GR_ENUM 
myprefix:count.SCAN

● caget -a myprefix:count



  

Database Scanning

● Cause processing
● When actions happen

● Inputs read
● Outputs written
● Value conversion
● Alarms checked

● Defined per record
● SCAN field

● Conditions
● Periodic timer

– 1 second, 10 
second, ...

● HW interrupt
– I/O Intr

● Passive
– More in a moment



  

Scan Examples

record(bi, “status..”) {

field(SCAN, “1 second”)

field(INP, “some:other”)

}

record(ai, “level..”) {

field(SCAN, “I/O Intr”)

field(DTYP, “myadc”)

field(INP, “#C1 S0 @adc”)

}

record(ao, “gain..”) {

field(SCAN, “Passive”)

field(DTYP, “mydac”)

field(INP, “#C1 S0 @gain”)

}

Device Support must
know which “interrupt”
source to use



  

Passive Scan

● Actions which can cause a Passive record to 
process
● A 'Get'
● A 'Put'
● A forward link (more in moment)

● Things which can cause...
● A DB link from another record
● A CA client (another IOC, caget, EDM, BOY, …)
● The difference: None



  

Link Types

● PV Link
● Connect to another 

field
● Any field (almost)
● Any IOC
● Local or Remote link

● Hardware Link
● Token for devSup
● Identifies (card 7, port 2)

PV Links
HW Links

Output Links

Input Links

A Link is the least common denominator of a local function call and and CA get/put



  

Link Types (2)

● Output Link
● Put data
● write value to 

referenced field

● Input Link
● Get data
● Read value from 

referenced field

● Forward Link
● Cause process()

Output Links

Input Links

PV Links
HW Links

A Link is the least common denominator of a local function call and and CA get/put



  

Constant Links

● Output
● No action

● Input
● Read a constant 

value (default 0)
● Store in 

associated value 
field (INPA → A)

record(calcout, “bpm:y”) {

field(INPA, “bpm:up”)

field(INPB, “bpm:down”)

field(INPC, “14”)

field(CALC, “(A-B)/(A+B+C)”)

}



  

Scanning and Links

● Link attributes (PP or NPP)
● Input Links

● NPP – Read current field value.
● PP – Process then read new field 

value

● Output Links
● NPP – Write field.
● PP – Write field then process using 

new value.

● Default is NPP

calcout



  

Process Passive Links

● field(INP, “name NPP”)

● Gets current value

● field(INP, “name PP”)

● If 'name' is SCAN 
Passive then process()

● Gets new value

● field(OUT, “name NPP”)

● Sets new value

● field(OUT, “name PP”)

● Sets new value
● If Passive then 

process()



  

Forward Links

● NPP Links transfer 
data

● PP Links transfer data 
and causes processing

● Forward links only 
causes processing

● Every record has 1 
(FLNK)
● fanout has 8

record(bi, “bit1”) {

field(SCAN, “1 second”)

field(FLNK, “bit2”)

}

record(bi, “bit2”) {

field(FLNK, “bit3”)

}

record(bi, “bit3”) {

}



  

Link Types (3)

Input Link Output Link “Process” Link
PV Link Read a value from a field Write a value to a field
HW Link Read a value from a device/driver Write a value to a device/driver

record(ai, “$(P)chan1”) {
  field(FLNK, “$(P)loop”)
  field(DTYP, “adcX”)
  field(VAL , “0”)
  field(INP , “#C1 S0 @adc”)
  field(SCAN, “I/O Intr”)
}

record(calcout, “$(P)loop”) {
  field(INPA, “$(P)chan1”)
  field(INPB, “10e4”)
  field(INPC, “3.2”)
  field(CALC, “(B-A)*C”)
  field(OUT, “$(P)dac PP”)
}

record(ao, “$(P)dac”) {
  field(DTYP, “PLC”)
  field(VAL , “0”)
  field(OUT ,”@CHAN4”)
}

The Real World

IO Scan List



  

Record Processing Chains

● In most databases most records (~50%) don't 
belong to a processing chain.

● Processing chains are usually short (2-3 
records).

● Most databases have a few longer chains.



  

Add process chain examples
Pass 1 overview

Pass 2 step through



  

Exercise 2 – Random numbers

● calc expressions can contain 'RNDM' to 
generate a uniform random number [0,1].

field(CALC, “RNDM”)

● A Gaussian distribution can be approximated by 
summing 8 such numbers.

● What does '$(P):sum' in gauss.db actually use.



  

Example 2 – Database 

record(calc, "$(P):unif") {

  field(CALC, "RNDM")

  field(PREC, "1")

}

record(calc, "$(P):sum") {

  field(SCAN, "1 second")

  field(CALC, "A+B+C+D+E+F+G+H")

  field(INPA, "$(P):unif")

  field(INPB, "$(P):unif")

  field(INPC, "$(P):unif")

  field(INPD, "$(P):unif")

  field(INPE, "$(P):unif")

  field(INPF, "$(P):unif”)

  field(INPG, "$(P):unif")

  field(INPH, "$(P):unif")

  field(PREC, "1")

  field(FLNK, "$(P):hist")

}



  

Alarms

● Each record has an alarm severity and status
● Severity: NO_ALARM, MINOR, MAJOR, 

INVALID
● Status: READ, WRITE, LINK, …
● Conditions defined in record and device support
● Highest severity shown



  

Value Level Alarms

● For ao,ai, longout, 
longin

● Severity
● NO_ALARM, MINOR, 

MAJOR, INVALID
● Default: NO_ALARM

● Levels
● HIHI, HIGH, LOW, 

LOLO

HIHI

HIGH

VAL

LOW

LOLO



  

Value Level Alarms

● For ao,ai, longout, 
longin

● Severity
● NO_ALARM, MINOR, 

MAJOR, INVALID
● Default: NO_ALARM

● Levels
● HIHI, HIGH, LOW, 

LOLO

record(ai, “my:adc”) {

field(HIGH, “14”)

field(HSV, “MINOR”)

field(LOW, “-12”)

field(LSV, “MAJOR”)

}



  

Invalid Alarms

● For: ao, bo, calcout, 
mbbo, stringout

● IVOA
● Continue Normally
● Don't drive outputs
● Set output to IVOV

● IVOV
● Same type as VAL

record(ao, “my:dac”) {

field(HIGH, “255”)

field(HSV, “INVALID”)

field(LOW, “0”)

field(LSV, “INVALID”)

field(IVOA, “Set output 
to IVOV”)

field(IVOV, “0”)

}

Doesn't clip like
DRVH DRVL



  

Exercise 3 – Sine

● Use a counter calcout and another calcout 
record to generate a sine wave.

● Set a minor alarm when >0.5 and a major alarm 
when <-0.7

● Use only one calcout for both count and sine 
(Hint: OCAL and OVAL fields)



  

Exercise 3 – Database

record(calcout, "$(P):sine:cnt") {

  field(SCAN, ".1 second")

  field(CALC, "A+B")

  field(INPA, "$(P):sine:cnt.VAL NPP")

  field(INPB, "0.01")

  field(OCAL, "sin(A)")

  field(OUT , "$(P):sine PP")

}

record(ai, "$(P):sine") {

  field(HIGH, "0.5")

  field(HSV , "MINOR")

  field(LOW , "-0.7")

  field(LSV , "MAJOR")

}



  

Link and Alarms

● Link attribute 
MS/NMS

● NMS (default)
● Just get/put the value

● MS
● Get/put value and 

alarm severity

● Propagate Alarms

record(ai, “one”) {

field(HIGH, “10”)

field(HSV, “MINOR”)

}

record(ai, “two”) {

field(INP, “one MS PP”)

field(SCAN, “1 second”)

}



  

Analog Scaling

● For: ao, ai
● Go from RVAL (integer) → VAL (float)

● field(DTYP, “Raw Soft Channel”)
● Some other device support

● Players: LINR, ROFF, ASLO, AOFF, ESLO, EOFF
● VAL=(RVAL+ROFF)*ASLO+AOFF
● If LINR=”LINEAR”
● VAL=ESLO*VAL+EOFF
● EGU=”some string”



  

Analog Scaling Example

record(ai, “adc1”) {

field(DTYP, “myadc”)

field(ASLO, “0.1”)

field(AOFF, “10”)

field(ESLO, “”)

field(EOFF, “”)

field(EGU, “F”)

}

● ADC calibration
● 0.1 degrees/count
● Count 0 is 10 deg. C

● C → F



  

Record Timestamps

● Each record has one timestamp
● Shared by all fields

●  Updated when processed
● NOT when values change
● Defaults to 0 (Jan. 1 1990) until first processed

● Problem for non-value fields
● camonitor recname.SCAN

● Makes archiving these fields tricky



  

Controlling Timestamps

● Fields:
● TSEL – Timestamp selection input link
● TSE – Timestamp Event
● TIME – Stored time (Not directly readable)

● Choose where timestamp is taken from
● Uses generalTime framework (>= 3.14.9)



  

Timestamp Selection

/* recGblTimeStamp() */

If TSEL is not CONSTANT

if TSEL points to a TIME field

TIME=dbGetTimeStamp(TSEL)

return

TSE=dbGetLink(TSEL)

if TSE != -2

TIME=epicsTimeGetEvent(TSE)

return

Takes time from record pointer
or CA metadata

Read an integer to use as the event number

Takes time of last occurrence
of event #

Special hidden TSEL link option



  

generalTime Events

● Normal events: 1-32k
● Not database events
● Hooks to event timing system (if present)
● No default provider

● Special events
● 0 – Current wall clock time
● -1 – Best event time (???)
● -2 – Allow device support to set TIME



  

TS Examples (1)

● Current wall clock time
● Default

record(ai, “name”) {

…

}

● Specific gT event

record(ai, “name”) {

field(TSE, “42”)

}

● From another record

record(calc, “name”) {

field(INPA, “other.VAL”)

field(TSEL, “other.TIME”)

}
● Take event # from 

another record

record(calc, “name”) {

field(TSEL, “other.TSE”)

}



  

TSEL and CA_LINK

● Potential mistake if 'aaa' and 'bbb' are 
in the same IOC.

● Example 1  (Wrong)
● aaa.TSEL is DB_LINK

● 'aaa' and 'bbb' in same lock set

● Timestamp may not match value

● Example 2 (Right)
● aaa.TSEL is CA_LINK

● 'aaa' and 'bbb' in different lock sets

● Rule: TSEL must use same type of 
link as value link.

record(calc, “aaa”) {

field(INPA, “bbb CPP”)

field(TSEL, “bbb.TIME”)

}

record(calc, “aaa”) {

field(INPA, “bbb CPP”)

field(TSEL, “bbb.TIME CA”)

}
Uses meta-data
from previous
monitor/get.

Copies latest
From record struct



  

Set Timestamp is Device Support

● Set TSE to -2

record(ai, “aaa”) {

field(TSE, “-2”)

}

● In dset

read_ai(aiRecord* prec) {

if(prec->tse==epicsTimeEventDeviceTime) { /* -2 */
prec->time.secPastEpoch=... /* Use EPICS Epoch (Jan 1 1990) */

prec->time.nsec=...

}

}



  

Common Record Fields

● Device support: DTYP, INP, OUT

● Links: INP, OUT

● Scanning
● SCAN, PINI, PACT

● Values: VAL, OVAL, RVAL, RBV, RRBV

● Alarms
● STAT, SEVR

● HIHI, HIGH, LOW, LOLO

● HHSV (high high severity), HSV, LSV, LLSV

● Value+Alarm
● IVOA (invalid out action), IVOV (invalid out value)

● Display: EGU, DRVH, DRVL
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